Massively Parallel Sequencing Reveals the Complex Structure of an Irradiated Human Chromosome on a Mouse Background in the Tc1 Model of Down Syndrome
نویسندگان
چکیده
Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype--phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439.
منابع مشابه
Dosage of the Abcg1-U2af1 Region Modifies Locomotor and Cognitive Deficits Observed in the Tc1 Mouse Model of Down Syndrome
Down syndrome (DS) results from one extra copy of human chromosome 21 and leads to several alterations including intellectual disabilities and locomotor defects. The transchromosomic Tc1 mouse model carrying an extra freely-segregating copy of human chromosome 21 was developed to better characterize the relation between genotype and phenotype in DS. The Tc1 mouse exhibits several locomotor and ...
متن کاملApplication of Molecular DNA Markers (STRs) in Molecular Diagnosis of Down Syndrome in Iran
Down syndrome is one of the most common causes of mental retardation observed in approximately 1/700 live birth. The use of two or more STR markers related to chromosome 21 facilitates the diagnosis of Down syndrome within about six hours from the collection of the samples. This is the first study has been performed in Iranian population to assess the diagnostic value of using small tandem repe...
متن کاملI-13: Transcriptome Dynamics of Human and Mouse Preimplantation Embryos Revealed by Single Cell RNA-Sequencing
Background: Mammalian preimplantation development is a complex process involving dramatic changes in the transcriptional architecture. However, it is still unclear about the crucial transcriptional network and key hub genes that regulate the proceeding of preimplantation embryos. Materials and Methods: Through single-cell RNAsequencing (RNA-seq) of both human and mouse preimplantation embryos, ...
متن کاملImpairments in motor coordination without major changes in cerebellar plasticity in the Tc1 mouse model of Down syndrome
Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of human chromosome 21 (Hsa21). Recently, O'Doherty et al. [An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309 (2005) 2033-2037] generated a trans-species aneuploid mouse line (Tc1) that carries an almost complete Hsa21. The Tc1 mouse is the most complete animal mode...
متن کاملEffect of vitamin E on preovulatory stage irradiated female mouse expressed as chromosomal abnormalities in generated embryos
Background: The present study has been carried out to investigate the effects of preovulatory stage gamma-irradiation of female mice in the absence or presence of vitamin E on numerical chromosome abnormalities in 8-cell embryos after mating with non-irradiated males. Materials and Methods: The 8-11 weeks adult female NMRI mice were whole body irradiated at preovulatory stage (post PMSG inject...
متن کامل